Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.266
Filtrar
1.
Nutrients ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542729

RESUMO

In this review, we explored the therapeutic potential of oleuropein (OLE) and hydroxytyrosol (HT) in the treatment of neuroblastoma (NB). NB is an extracranial tumour that predominantly affects children aged between 17 and 18 months. Recurrence and drug resistance have emerged as the biggest challenges when treating NB, leading to a crucial need for new therapeutic approaches. Food of the Mediterranean Diet (MD) presents several health benefits, including that of cancer treatment. In this review, we emphasised olive oil since it is one of the main liquid ingredients of the MD. OLE is the principal phenolic compound that constitutes olive oil and is hydrolysed to produce HT. Considering that tumour cells produce increased amounts of reactive oxygen species, this review highlights the antioxidant properties of OLE and HT and how they could result in increased cellular antioxidant defences and reduced oxidative damage in NB cells. Moreover, we highlight that these phenolic compounds lead to apoptosis and cell cycle arrest, reduce the side effects caused by conventional treatments, and activate tumours that become dormant as a resistance mechanism. Future research should explore the effects of these compounds and other antioxidants on the treatment of NB in vivo.


Assuntos
Glucosídeos Iridoides , Neuroblastoma , Olea , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Criança , Humanos , Lactente , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Azeite de Oliva , Fenóis/farmacologia , Álcool Feniletílico/farmacologia , Neuroblastoma/tratamento farmacológico
2.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474755

RESUMO

The inflammatory process is triggered by several factors such as toxins, pathogens, and damaged cells, promoting inflammation in various systems, including the cardiovascular system, leading to heart failure. The link between periodontitis as a chronic inflammatory disease and cardiovascular disease is confirmed. Propolis and its major component, caffeic acid phenethyl ester (CAPE), exhibit protective mechanisms and anti-inflammatory effects on the cardiovascular system. The objective of the conducted study was to assess the anti-inflammatory effects of the Polish ethanolic extract of propolis (EEP) and its major component-CAPE-in interferon-alpha (IFN-α), lipopolysaccharide (LPS), LPS + IFN-α-induced human gingival fibroblasts (HGF-1). EEP and CAPE were used at 10-100 µg/mL. A multiplex assay was used for interleukin and adhesive molecule detection. Our results demonstrate that EEP, at a concentration of 25 µg/mL, decreases pro-inflammatory cytokine IL-6 in LPS-induced HGF-1. At the same concentration, EEP increases the level of anti-inflammatory cytokine IL-10 in LPS + IFN-α-induced HGF-1. In the case of CAPE, IL-6 in LPS and LPS + IFN-α induced HGF-1 was decreased in all concentrations. However, in the case of IL-10, CAPE causes the highest increase at 50 µg/mL in IFN-α induced HGF-1. Regarding the impact of EEP on adhesion molecules, there was a noticeable reduction of E-selectin by EEP at 25, 50, and100 µg/mL in IFN-α -induced HGF-1. In a range of 10-100 µg/mL, EEP decreased endothelin-1 (ET-1) during all stimulations. CAPE statistically significantly decreases the level of ET-1 at 25-100 µg/mL in IFN-α and LPS + IFN-α. In the case of intercellular adhesion molecule-1 (ICAM-1), EEP and CAPE downregulated its expression in a non-statistically significant manner. Based on the obtained results, EEP and CAPE may generate beneficial cardiovascular effects by influencing selected factors. EEP and CAPE exert an impact on cytokines in a dose-dependent manner.


Assuntos
Doenças Cardiovasculares , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Própole , Humanos , Lipopolissacarídeos/farmacologia , Interleucina-10 , Interferon-alfa , Própole/farmacologia , Cardiotônicos , Interleucina-6 , Álcool Feniletílico/farmacologia , Etanol , Ácidos Cafeicos/farmacologia , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia
3.
Cell Biochem Funct ; 42(2): e3942, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379263

RESUMO

Colorectal cancer (CRC) is among the most prevalent gastrointestinal cancers of epithelial origin worldwide, with over 2 million cases detected every year. Emerging evidence suggests a significant increase in the levels of inflammatory and stress-related markers in patients with CRC, indicating that oxidative stress and lipid peroxidation may influence signalling cascades involved in the progression of the disease. However, the precise molecular and cellular basis underlying CRC and their modulations during bioactive compound exposure have not yet been deciphered. This study examines the effect of caffeic acid phenethyl ester (CAPE), a natural bioactive compound, in HT29 CRC cells grown under serum-supplemented and serum-deprived conditions. We found that CAPE inhibited cell cycle progression in the G2/M phase and induced apoptosis. Migration assay confirmed that CAPE repressed cancer invasiveness. Protein localisation by immunofluorescence microscopy and protein expression by western blot analysis reveal increased expressions of key inflammatory signalling mediators such as p38α, Jun N-terminal kinase and extracellular signal-regulated kinase (ERK) proteins. Molecular docking data demonstrates that CAPE shows a higher docking score of -5.35 versus -4.59 to known p38 inhibitor SB203580 as well as a docking score of -4.17 versus -3.86 to known ERK1/2 inhibitor AZD0364. Co-immunoprecipitation data reveals that CAPE treatment effectively downregulates heat shock protein (HSP) expression in both sera-supplemented and limited conditions through its interaction with mitogen-activated protein kinase 14 (MAPK14). These results suggest that stress induction via serum starvation in HT29 CRC cells leads to the induction of apoptosis and co-ordinated activation of MAPK-HSP pathways. Molecular docking studies support that CAPE could serve as an effective inhibitor to target p38 and MAPK compared to their currently known inhibitors.


Assuntos
Neoplasias do Colo , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Humanos , Linhagem Celular Tumoral , Proteínas de Choque Térmico , Simulação de Acoplamento Molecular , Apoptose , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/metabolismo , Álcool Feniletílico/farmacologia , Álcool Feniletílico/metabolismo , Neoplasias do Colo/tratamento farmacológico
4.
Biol Pharm Bull ; 47(1): 303-310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38281774

RESUMO

Methotrexate (MTX) is an indispensable drug used for the treatment of many autoimmune and cancerous diseases. However, its clinical use is associated with serious side effects, such as lung fibrosis. The main objective of this study is to test the hypothesis that hydroxytyrosol (HT) can mitigate MTX-induced lung fibrosis in rats while synergizing MTX anticancer effects. Pulmonary fibrosis was induced in the rats using MTX (14 mg/kg/week, per os (p.o.)). The rats were treated with or without HT (10, 20, and 40 mg/kg/d p.o.) or dexamethasone (DEX; 0.5 mg/kg/d, intraperitoneally (i.p.)) for two weeks concomitantly with MTX. Transforming growth factor beta 1 (TGF-ß1), interleukin-4 (IL-4), thromboxane A2 (TXA2), vascular endothelial growth factor (VEGF), 8-hydroxy-2-deoxy-guanosine (8-OHdG), tissue factor (TF) and fibrin were assessed using enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and RT-PCR. Pulmonary fibrosis was manifested by an excessive extracellular matrix (ECM) deposition and a marked increase in TGF-ß1 and IL-4 in lung tissues. Furthermore, cotreatment with HT or dexamethasone (DEX) significantly attenuated MTX-induced ECM deposition, TGF-ß1, and IL-4 expression. Similarly, HT or DEX notably reduced hydroxyproline contents, TXA2, fibrin, and TF expression in lung tissues. Moreover, using HT or DEX downregulated the gene expression of TF. A significant decrease in lung contents of VEGF, IL-8, and 8-OHdG was also observed in HT + MTX- or DEX + MTX -treated animals in a dose-dependent manner. Collectively, the results of our study suggest that HT might represent a potential protective agent against MTX-induced pulmonary fibrosis.


Assuntos
Metotrexato , Álcool Feniletílico , Fibrose Pulmonar , Animais , Ratos , Dexametasona/farmacologia , Fibrina/metabolismo , Interleucina-4/metabolismo , Pulmão/patologia , Metotrexato/efeitos adversos , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Tromboplastina/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
J Dent ; 143: 104867, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286192

RESUMO

OBJECTIVES: This study aimed to evaluate silver nanoparticles (AgNPs) obtained by a 'green' route associated or not to tyrosol (TYR) against Streptococcus mutans and Candida albicans in planktonic and biofilms states. METHODS: AgNPs were obtained by a 'green' route using pomegranate extract. The minimum inhibitory concentration (MIC) against S. mutans and C. albicans was determined for AgNPs and TYR combined and alone, and fractional inhibitory concentration index (FICI) was calculated. Single biofilms of C. albicans and S. mutans were cultivated for 24 h and then treated with drugs alone or in combination for 24 h. RESULTS: AgNPs and TYR were effective against C. albicans and S. mutans considering planktonic cells alone and combined. The MIC values obtained for C. albicans was 312.5 µg/mL (AgNPs) and 50 mM (TYR) and for S. mutans was 78.1 µg/mL (AgNPs) and 90 mM (TYR). The combination of these antimicrobial agents was also effective against both microorganisms: 2.44 µg/mL/0.08 mM (AgNPs/TYR) for C. albicans and 39.05 µg/mL /1.25 mM (AgNPs/TYR) for S. mutans. However, synergism was observed only for C. albicans (FICI 0.008). When biofilm was evaluated, a reduction of 4.62 log10 was observed for S. mutans biofilm cells treated with AgNPs (p < 0.05, Tukey test). However, the addition of TYR to AgNPs did not improve their action against biofilm cells (p > 0.05). AgNPs combined with TYR demonstrated a synergistic effect against C. albicans biofilms. CONCLUSIONS: These findings suggest the potential use of AgNPs with or without TYR against C. albicans and S. mutans, important oral pathogens. CLINICAL SIGNIFICANCE: AgNPs obtained by a 'green' route combined or not with TYR can be an alternative to develop several types of oral antimicrobial therapies and biomaterials.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Prata/farmacologia , Anti-Infecciosos/farmacologia , Álcool Feniletílico/farmacologia , Candida albicans , Biofilmes , Streptococcus mutans
6.
Mol Nutr Food Res ; 68(1): e2300508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933702

RESUMO

SCOPE: Extra virgin olive oil has numerous cardiopreventive effects, largely due to its high content of (poly)phenols such as hydroxytyrosol (HT). However, some animal studies suggest that its excessive consumption may alter systemic lipoprotein metabolism. Because human lipoprotein metabolism differs from that of rodents, this study examines the effects of HT in a humanized mouse model that approximates human lipoprotein metabolism. METHODS AND RESULTS: Mice are treated as follows: control diet or diet enriched with HT. Serum lipids and lipoproteins are determined after 4 and 8 weeks. We also analyzed the regulation of various genes and miRNA by HT, using microarrays and bioinformatic analysis. An increase in body weight is found after supplementation with HT, although food intake was similar in both groups. In addition, HT induced the accumulation of triacylglycerols but not cholesterol in different tissues. Systemic dyslipidemia after HT supplementation and impaired glucose metabolism are observed. Finally, HT modulates the expression of genes related to lipid metabolism, such as Pltp or Lpl. CONCLUSION: HT supplementation induces systemic dyslipidemia and impaired glucose metabolism in humanized mice. Although the numerous health-promoting effects of HT far outweigh these potential adverse effects, further carefully conducted studies are needed.


Assuntos
Dislipidemias , Álcool Feniletílico , Humanos , Camundongos , Animais , Azeite de Oliva/farmacologia , Dislipidemias/etiologia , Álcool Feniletílico/farmacologia , Lipoproteínas , Modelos Animais de Doenças , Glucose
7.
Oncol Rep ; 51(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099422

RESUMO

Hypopharyngeal squamous cell carcinoma (HSCC) is a relatively rare form of head and neck cancer that is notorious for its poor prognosis and low overall survival rate. This highlights the need for new therapeutic options for this malignancy. The objective of the present study was to examine the ability of caffeic acid phenethyl ester (CAPE), which is an active compound found in propolis, to combat HSCC tumor growth. CAPE exerted its tumor­suppressive activity in HSCC cell lines through the induction of apoptosis. Mechanistically, the CAPE­mediated apoptotic process was attributed to the perturbation of the mitochondrial membrane potential and the activation of caspase­9. CAPE also modulated survivin and X­linked inhibitor of apoptosis, which are potent members of the inhibitors of apoptosis protein family, either through transcriptional or post­translational regulation, leading to HSCC cell line death. Therefore, the findings of the present study suggested that CAPE is an effective treatment alternative for HSCC via the stimulation of mitochondria­dependent apoptosis.


Assuntos
Neoplasias de Cabeça e Pescoço , Álcool Feniletílico , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Linhagem Celular Tumoral , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Apoptose , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
8.
Cell Biochem Funct ; 42(1): e3900, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38111127

RESUMO

The deadliest type of skin cancer, malignant melanoma, is also the reason for the majority of skin cancer-related deaths. The objective of this article was to investigate the efficiency of free caffeic acid phenethyl ester (CAPE) and liposomal CAPE in inducing apoptosis in melanoma cells (A375) in in vitro. CAPE was loaded into liposomes made up of hydrogenated soybean phosphatidylcholine, cholesterol, and 1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000], and their physicochemical properties were assessed. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was performed for comparing the cytotoxicity of free CAPE and liposomal CAPE at dosages of 10, 15, 25, 50, 75 and the highest dose of 100 µg/mL for period of 24 and 48 h on A375 cell line to calculate IC50. Apoptosis and necrosis were evaluated in A375 melanoma cancer cells using flow cytometry. Atomic force microscopy was utilized to determine the nanomechanical attributes of the membrane structure of A375 cells. To determine whether there were any effects on apoptosis, the expression of PI3K/AKT1 and BAX/BCL2 genes was analyzed using the real-time polymerase chain reaction technique. According to our results, the maximum amount of drug release from nanoliposomes was determined to be 91% and the encapsulation efficiency of CAPE in liposomes was 85.24%. Also, the release of free CAPE was assessed to be 97%. Compared with liposomal CAPE, free CAPE showed a greater effect on reducing the cancer cell survival after 24 and 48 h. Therefore, IC50 values of A375 cells treated with free and liposomal CAPE were calculated as 47.34 and 63.39 µg/mL for 24 h. After 48 h of incubation of A375 cells with free and liposomal CAPE, IC50 values were determined as 30.55 and 44.83 µg/mL, respectively. The flow cytometry analysis revealed that the apoptosis induced in A375 cancer cells was greater when treated with free CAPE than when treated with liposomal CAPE. The highest nanomechanical changes in the amount of cell adhesion forces, and elastic modulus value were seen in free CAPE. Subsequently, the greatest decrease in PI3K/AKT1 gene expression ratio occurred in free CAPE.


Assuntos
Melanoma , Álcool Feniletílico , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Linhagem Celular Tumoral , Lipossomos , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Neoplasias Cutâneas/patologia , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/uso terapêutico , Apoptose , Fosfatidilinositol 3-Quinases/metabolismo
9.
Fungal Biol ; 127(10-11): 1384-1388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37993249

RESUMO

The filamentous fungus Cunninghamella echinulata is a model of mammalian xenobiotic metabolism. Under certain conditions it grows as a biofilm, which is a natural form of immobilisation and enables the fungus to catalyse repeated biotransformations. Putative signalling molecules produced by other Cunninghamella spp., such as 3-hydroxytyrosol and tyrosol, do not affect the biofilm growth of C. echinulata, suggesting that it employs a different molecule to regulate biofilm growth. In this paper we report that 2-phenylethanol is produced in higher concentrations in planktonic cultures of C. echinulata than when the fungus is grown as a biofilm. We demonstrate that exogenously added 2-phenylethanol inhibits biofilm growth of C. echinulata but has no effect on planktonic growth. Furthermore, we show that addition of 2-phenylethanol to established C. echinulata biofilm causes detachment. Therefore, we conclude that this molecule is produced by the fungus to regulate biofilm growth.


Assuntos
Cunninghamella , Álcool Feniletílico , Animais , Cunninghamella/metabolismo , Álcool Feniletílico/farmacologia , Biotransformação , Biofilmes , Mamíferos
10.
J Neurosci ; 43(47): 7958-7966, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37813571

RESUMO

In the mammalian nose, two chemosensory systems, the trigeminal and the olfactory mediate the detection of volatile chemicals. Most odorants are able to activate the trigeminal system, and vice versa, most trigeminal agonists activate the olfactory system as well. Although these two systems constitute two separate sensory modalities, trigeminal activation modulates the neural representation of an odor. The mechanisms behind the modulation of olfactory response by trigeminal activation are still poorly understood. We addressed this question by looking at the olfactory epithelium (OE), where olfactory sensory neurons (OSNs) and trigeminal sensory fibers co-localize and where the olfactory signal is generated. Our study was conducted in a mouse model. Both sexes, males and females, were included. We characterize the trigeminal activation in response to five different odorants by measuring intracellular Ca2+ changes from primary cultures of trigeminal neurons (TGNs). We also measured responses from mice lacking TRPA1 and TRPV1 channels known to mediate some trigeminal responses. Next, we tested how trigeminal activation affects the olfactory response in the olfactory epithelium using electro-olfactogram (EOG) recordings from wild-type (WT) and TRPA1/V1-knock out (KO) mice. The trigeminal modulation of the olfactory response was determined by measuring responses to the odorant, 2-phenylethanol (PEA), an odorant with little trigeminal potency after stimulation with a trigeminal agonist. Trigeminal agonists induced a decrease in the EOG response to PEA, which depended on the level of TRPA1 and TRPV1 activation induced by the trigeminal agonist. This suggests that trigeminal activation can alter odorant responses even at the earliest stage of the olfactory sensory transduction.SIGNIFICANCE STATEMENT Most odorants reaching the olfactory epithelium (OE) can simultaneously activate olfactory and trigeminal systems. Although these two systems constitute two separate sensory modalities, trigeminal activation can alter odor perception. Here, we analyzed the trigeminal activity induced by different odorants proposing an objective quantification of their trigeminal potency independent from human perception. We show that trigeminal activation by odorants reduces the olfactory response in the olfactory epithelium and that such modulation correlates with the trigeminal potency of the trigeminal agonist. These results show that the trigeminal system impacts the olfactory response from its earliest stage.


Assuntos
Neurônios Receptores Olfatórios , Álcool Feniletílico , Masculino , Humanos , Feminino , Camundongos , Animais , Olfato/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Mucosa Olfatória , Odorantes , Camundongos Knockout , Álcool Feniletílico/farmacologia , Mamíferos
11.
Biotechnol Lett ; 45(11-12): 1541-1554, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831285

RESUMO

OBJECTIVES: The applicability of a simple and high-throughput method for quantitative characterization of biofilm formation by Candida boidinii was tested in order to evaluate the effects of exogenous tyrosol on yeast growth and biofilm formation capacity. RESULTS: Significant concentration-, temperature and time-dependent effect of tyrosol (2-(4-hydroxyphenyl)ethanol) was demonstrated, but it differentially affected the growth and biofilm formation (characterized by crystal violet staining and XTT-reduction assay) of Candida boidinii. Testing biofilm based on metabolic activity displayed sensitively the differences in the intensity of biofilm in terms of temperature, tyrosol concentration, and exposure time. At 22 °C after 24 h none of the tyrosol concentrations had significant effect, while at 30 °C tyrosol-mediated inhibition was observed at 50 mM and 100 mM concentration. After 48 h and 72 h at 22 °C, biofilm formation was stimulated at 6.25-25 mM concentrations, meanwhile at 30 °C tyrosol decreased the biofilm metabolic activity proportionally with the concentration. CONCLUSIONS: The research concludes that exogenous tyrosol exerts unusual effects on Candida boidinii growth and biofilm formation ability and predicts its potential application as a regulating factor of various fermentations by Candida boidinii.


Assuntos
Álcool Feniletílico , Saccharomycetales , Biofilmes , Álcool Feniletílico/farmacologia , Álcool Feniletílico/metabolismo , Saccharomycetales/metabolismo , Candida albicans
12.
Molecules ; 28(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570782

RESUMO

Caffeic acid phenethyl ester (CAPE) belongs to the phenols found in propolis. It has already shown strong antiproliferative, cytotoxic and pro-apoptotic activities against head and neck cancers and against breast, colorectal, lung and leukemia cancer cells. Ovarian cancer is one of the most dangerous gynecological cancers. Its treatment involves intensive chemotherapy with platinum salts and paclitaxel (PTX). The purpose of this study was to evaluate whether the combined use of CAPE and paclitaxel increases the effectiveness of chemotherapeutic agents. The experiment was performed on three ovarian cancer lines: OV7, HTB78, and CRL1572. The effect of the tested compounds was assessed using H-E staining, a wound-healing test, MTT and the cell death detection ELISAPLUS test. The experiment proved that very low doses of PTX (10 nM) showed a cytotoxic effect against all the cell lines tested. Also, the selected doses of CAPE had a cytotoxic effect on the tested ovarian cancer cells. An increase in the cytotoxic effect was observed in the OV7 line after the simultaneous administration of 10 nM PTX and 100 µM CAPE. The increase in the cytotoxicity was dependent on the CAPE dosage (50 vs. 100 µM) and on the duration of the experiment. In the other cell lines tested, the cytotoxic effect of PTX did not increase after the CAPE administration. The administration of PTX together with CAPE increased the percentage of apoptotic cells in the tested ovarian cancer cell lines. Moreover, the simultaneous administration of PTX and CAPE enhanced the anti-migration activity of the chemotherapeutic used in this study.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Álcool Feniletílico , Humanos , Feminino , Paclitaxel/farmacologia , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Antineoplásicos/farmacologia , Álcool Feniletílico/farmacologia , Ácidos Cafeicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico
13.
J Food Sci ; 88(10): 4059-4067, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37589305

RESUMO

The objective of this study is to assess the inhibitory effects of an aqueous extract from olive oil mill waste (alperujo) on the growth of a lactic acid bacteria (LAB) cocktail consisting of various strains of Lactiplantibacillus pentosus and Lactiplantibacillus plantarum species. For this purpose, response surface methodology was employed using two independent variables (pH levels 3.5-5.55; hydroxytyrosol concentration ranging from 0.93-2990 ppm). The response variable was the average inhibition per treatment on the LAB cocktail (expressed as a percentage). The developed model identified significant terms, including the linear effect of hydroxytyrosol and pH, their interaction, and the quadratic effect of pH. Maximum inhibition of the LAB cocktail was observed at progressively higher concentrations of hydroxytyrosol and lower pH values. Therefore, complete inhibition of LAB in the synthetic culture medium could only be achieved for concentrations of 2984 ppm hydroxytyrosol at a pH of 3.95. These findings suggest that extracts derived from "alperujo" could be utilized as a natural preservative in acidified foods with a bitter flavor and antioxidant requirements.


Assuntos
Anti-Infecciosos , Lactobacillales , Olea , Álcool Feniletílico , Antioxidantes/farmacologia , Azeite de Oliva/farmacologia , Álcool Feniletílico/farmacologia
14.
Niger J Clin Pract ; 26(6): 686-693, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37470640

RESUMO

Background: Organophosphate (Op)-containing herbicides continue to be widely used in the world. Although its usage and intoxication are widespread, the studies on organophosphate-induced neurotoxicity and treatment protocols are very few in the literature. Aims: This study aimed to investigate any potential effects of caffeic acid phenyl ester with/without intralipid on neurotoxicity produced by acute intoxication of glyphosate isopropylamine in an experimental rat model. Materials And Methods: Forty-nine wistar albino rats were randomly allotted into seven experimental groups: I, control; II, intralipid (IL); III, caffeic acid phenyl esther (CAPE); IV, glyphosate isopropylamine (GI); V, GI + IL; VI, GI + CAPE; and VII, GI + IL + CAPE. Total antioxidant and oxidant status levels were gauged, and the oxidative stress index was calculated in the serum samples. On the other hand, the tissues were analyzed with hematoxylin-eosin (HE) staining protocol and counted up by immunohistochemical method. Statistical evaluations were conducted using SPSS 11.5 for Windows (SPSS, Chicago, IL, USA). Results: Compared to the control, IL, and GI + IL + CAPE groups, the GI group significantly decreased the total antioxidant levels in brain tissues. In a supportive nature, a significant increase in the oxidative site index (OSI) in the GI group compared to other groups. Especially standing out point of these findings is the significant difference between the GI + IL + CAPE and the GI group. Parallelly, histopathological analysis extended severe neurotoxicity in the GI group. Neurotoxic status was reduced significantly in the GI + CAPE + IL group. The histopathologic examinations confirmed biochemical results. The results also revealed that CAPE and IL, probably their antioxidant effects, have a rehabilitative effect on neurotoxicity caused by GI. Conclusion: Therefore, CAPE and IL may function as potential cleansing and scavenger agents for supportive therapy regarding tissue damage or facilitate the therapeutic effects of the routine treatment of the patient with GI poisoning.


Assuntos
Intoxicação por Organofosfatos , Álcool Feniletílico , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Intoxicação por Organofosfatos/tratamento farmacológico , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Estresse Oxidativo , Ratos Wistar , Organofosfatos/toxicidade
15.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446206

RESUMO

Immunosenescence and inflammaging facilitate the insurgence of chronic diseases. The Mediterranean diet is a non-invasive intervention to improve the chronic low-grade inflammatory status associated with aging. Olive oil oleuropein (OLE) and hydroxytyrosol (HT) demonstrated a controversial modulatory action on inflammation in vitro when tested at concentrations exceeding those detectable in human plasma. We studied the potential anti-inflammatory effects of OLE and HT at nutritionally relevant concentrations on peripheral blood mononuclear cells (PBMCs) as regards cell viability, frequency of leukocyte subsets, and cytokine release, performing an age-focused analysis on two groups of subjects: Adult (age 18-64 years) and Senior (age ≥ 65 years). OLE and HT were used alone or as a pre-treatment before challenging PBMCs with lipopolysaccharide (LPS). Both polyphenols had no effect on cell viability irrespective of LPS, but 5 µM HT had an LPS-like effect on monocytes, reducing the intermediate subset in Adult subjects. OLE and HT had no effect on LPS-triggered release of TNF-α, IL-6 and IL-8, but 5 µM HT reduced IL-10 secretion by PBMCs from Adult vs. Senior group. In summary, nutritionally relevant concentrations of OLE and HT elicit no anti-inflammatory effect and influence the frequency of immune cell subsets with age-related different outcomes.


Assuntos
Leucócitos Mononucleares , Álcool Feniletílico , Adulto , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Lipopolissacarídeos/toxicidade , Polifenóis/farmacologia , Álcool Feniletílico/farmacologia
16.
PLoS One ; 18(7): e0289031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37490511

RESUMO

BACKGROUND: Tumor metastasis is the main cause of death for breast cancer patients. Caffeic acid phenethyl ester (CAPE) has strong anti-tumor effects with very low toxicity and may be a potential candidate drug. However, the anti-metastatic effect and molecular mechanism of CAPE on breast cancer need more research. METHODS: MCF-7 and MDA-MB-231 breast cancer cells were used here. Wound healing and Transwell assay were used for migration and invasion detection. Western blot and RT-qPCR were carried out for the epithelial-to-myofibroblast transformation (EMT) process investigation. Western blot and immunofluorescence were performed for fibroblast growth factor receptor1 (FGFR1) phosphorylation and nuclear transfer detection. Co-immunoprecipitation was used for the FGFR1/myeloid differentiation protein2 (MD2) complex investigation. RESULTS: Our results suggested that CAPE blocks the migration, invasion, and EMT process of breast cancer cells. Mechanistically, CAPE inhibits FGFR1 phosphorylation and nuclear transfer while overexpression of FGFR1 reduces the anti-metastasis effect of CAPE. Further, we found that FGFR1 is bound to MD2, and silencing MD2 inhibits FGFR1 phosphorylation and nuclear transfer as well as cell migration and invasion. CONCLUSION: This study illustrated that CAPE restrained FGFR1 activation and nuclear transfer through MD2/FGFR1 complex inhibition and showed good inhibitory effects on the metastasis of breast cancer cells.


Assuntos
Neoplasias da Mama , Álcool Feniletílico , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Álcool Feniletílico/farmacologia , Ácidos Cafeicos/farmacologia , Proliferação de Células , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos
17.
J Phys Chem B ; 127(25): 5620-5632, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37319389

RESUMO

The etiology of Parkinson's disease (PD) is mainly linked to the α-synuclein (α-Syn) fibrillogenesis. Hydroxytyrosol (HT), also known as 3,4-dihydroxyphenylethanol, is a naturally occurring polyphenol, found in extra virgin olive oil, and has been shown to have cardioprotective, anticancer, antiobesity, and antidiabetic properties. HT has neuroprotective benefits in neurodegenerative diseases and lessens the severity of PD by reducing the aggregation of α-Syn and destabilizing the preformed toxic α-Syn oligomers. However, the molecular mechanism by which HT destabilizes α-Syn oligomers and alleviates the accompanying cytotoxicity remains unexplored. The impact of HT on the α-Syn oligomer structure and its potential binding mechanism was examined in this work by employing molecular dynamics (MD) simulations. The secondary structure analysis depicted that HT significantly reduces the ß-sheet and concomitantly increases the coil content of α-Syn trimer. Visualization of representative conformations from the clustering analysis depicted the hydrogen bond interactions of the hydroxyl groups in HT with the N-terminal and nonamyloid-ß component (NAC) region residues of α-Syn trimer, which, in turn, leads to the weakening of interchain interactions in α-Syn trimer and resulted in the disruption of the α-Syn oligomer. The binding free energy calculations depict that HT binds favorably to α-Syn trimer (ΔGbinding = -23.25 ± 7.86 kcal/mol) and a notable reduction in the interchain binding affinity of α-Syn trimer on the incorporation of HT, which, in turn, highlights its potential to disrupt α-Syn oligomers. The current research provided mechanistic insights into the destabilization of α-Syn trimer by HT, which, in turn, will provide new clues for developing therapeutics against PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Álcool Feniletílico , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Álcool Feniletílico/farmacologia , Doenças Neurodegenerativas/metabolismo
18.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372967

RESUMO

Caffeic acid phenethyl ester (CAPE) contains antibiotic and anticancer activities. Therefore, we aimed to investigate the anticancer properties and mechanisms of CAPE and caffeamide derivatives in the oral squamous cell carcinoma cell (OSCC) lines SAS and OECM-1. The anti-OSCC effects of CAPE and the caffeamide derivatives (26G, 36C, 36H, 36K, and 36M) were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test. Cell cycle and total reactive oxygen species (ROS) production were analyzed using flow cytometry. The relative protein expression of malignant phenotypes was determined via Western blot analysis. The results showed that 26G and 36M were more cytotoxic than the other compounds in SAS cells. After 26G or 36M treatment for 48 h, cell cycle S phase or G2/M phase arrest was induced, and cellular ROS increased at 24 h, and then decreased at 48 h in both cell lines. The expression levels of cell cycle regulatory and anti-ROS proteins were downregulated. In addition, 26G or 36M treatment inhibited malignant phenotypes through mTOR-ULK1-P62-LC3 autophagic signaling activated by ROS generation. These results showed that 26G and 36M induce cancer cell death by activating autophagy signaling, which is correlated with altered cellular oxidative stress.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Álcool Feniletílico , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/tratamento farmacológico , Álcool Feniletílico/farmacologia , Ácidos Cafeicos/farmacologia , Linhagem Celular Tumoral , Apoptose
19.
Chem Res Toxicol ; 36(6): 859-869, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37184291

RESUMO

Propolis is a resin-like material produced by bees from the buds of poplar and cone-bearing trees and is used in beehive construction. Propolis is a common additive in various biocosmetics and health-related products, despite the fact that it is a well-known cause of contact allergy. Caffeic acid and its esters have been the primary suspects behind the sensitization potency of propolis-induced contact allergy. However, the chemical structures of the protein adducts formed between these haptens and skin proteins during the process of skin sensitization remain unknown. In this study, the reactivity of three main contact allergens found in propolis, namely, caffeic acid (CA), caffeic acid 1,1-dimethylallyl ester (CAAE), and caffeic acid phenethyl ester (CAPE), was investigated. These compounds were initially subjected to the kinetic direct peptide reactivity assay to categorize the sensitization potency of CA, CAAE, and CAPE, but the data obtained was deemed too unreliable to confidently classify their skin sensitization potential based on this assay alone. To further investigate the chemistry involved in generating possible skin allergy-inducing protein adducts, model peptide reactions with CA, CAAE, and CAPE were conducted and analyzed via liquid chromatography-high-resolution mass spectrometry. Reactions between CA, CAAE, and CAPE and a cysteine-containing peptide in the presence of oxygen, both in closed and open systems, were monitored at specific time points. These studies revealed the formation of two different adducts, one corresponding to thiol addition to the α,ß-unsaturated carbonyl region of the caffeic structure and the second corresponding to thiol addition to the catechol, after air oxidation to o-quinone. Observation of these peptide adducts classifies these compounds as prehaptens. Interestingly, no adduct formation was observed when the same reactions were performed under oxygen-free conditions, highlighting the importance of air oxidation processes in CA, CAAE, and CAPE adduct formation. Additionally, through NMR analysis, we found that thiol addition occurs at the C-2 position in the aromatic ring of the CA derivatives. Our results emphasize the importance of air oxidation in the sensitization potency of propolis and shed light on the chemical structures of the resultant haptens which could trigger allergic reactions in vivo.


Assuntos
Hipersensibilidade , Álcool Feniletílico , Própole , Humanos , Própole/química , Ésteres , Álcool Feniletílico/farmacologia , Cisteína , Haptenos
20.
Phytomedicine ; 116: 154860, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37201366

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) is upregulated in prostate cancer (PCa). However, suppression of EGFR did not improve the patient outcome, possibly due to the activation of PI3K/Akt signaling in PCa. Compounds able to suppress both PI3K/Akt and EGFR signaling may be effective for treating advanced PCa. PURPOSE: We examined if caffeic acid phenethyl ester (CAPE) simultaneously suppresses the EGFR and Akt signaling, migration and tumor growth in PCa cells. METHODS: Wound healing assay, transwell migration assay and xenograft mice model were used to determine the effects of CAPE on migration and proliferation of PCa cells. Western blot, immunoprecipitation, and immunohistochemistry staining were performed to determine the effects of CAPE on EGFR and Akt signaling. RESULTS: CAPE treatment decreased the gene expression of HRAS, RAF1, AKT2, GSK3A, and EGF and the protein expression of phospho-EGFR (Y845, Y1069, Y1148, Y1173), phospho-FAK, Akt, and ERK1/2 in PCa cells. CAPE treatment inhibited the EGF-induced migration of PCa cells. Combined treatment of CAPE with EGFR inhibitor gefitinib showed additive inhibition on migration and proliferation of PCa cells. Injection of CAPE (15 mg/kg/3 days) for 14 days suppressed the tumor growth of prostate xenografts in nude mice as well as suppressed the levels of Ki67, phospho-EGFR Y845, MMP-9, phospho-Akt S473, phospho-Akt T308, Ras, and Raf-1 in prostate xenografts. CONCLUSIONS: Our study suggested that CAPE can simultaneously suppress the EGFR and Akt signaling in PCa cells and is a potential therapeutic agent for advanced PCa.


Assuntos
Álcool Feniletílico , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Próstata/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Fator de Crescimento Epidérmico , Neoplasias da Próstata/patologia , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Receptores ErbB , Álcool Feniletílico/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...